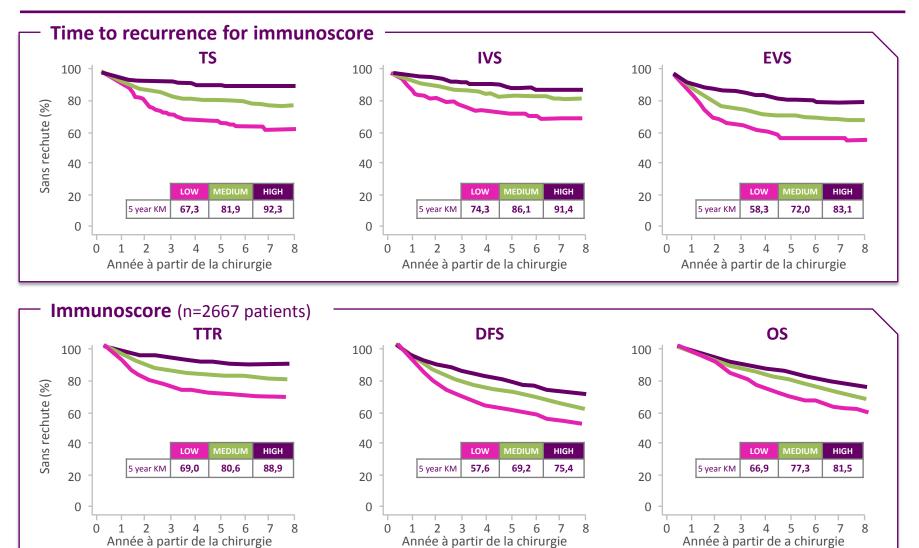

Immunotherapy in GI-Cancer

Gerald Prager, M.D.
Professor of Medicine
Comprehensive Cancer Center Vienna
Medical University of Vienna

Immune check points T cell regulation CTLA4 to CD80 or CD86_CD28 cell surface DC Signal 1 Signal 1 Intracellular **TCR** vesicle Peptide MHC Naive or resting T cell CTLA4 Co-stimulating b receptor Trafficking Co-stimulating of T cells to ligand peripheral tissues Tissue Signal 1 Signal 1 PDL1 or PDL2 PD1 Priming of T cells Antigen-experienced T cell Inflammation T cell function Pardoll DM et al., Nat Rev Cancer, 2012

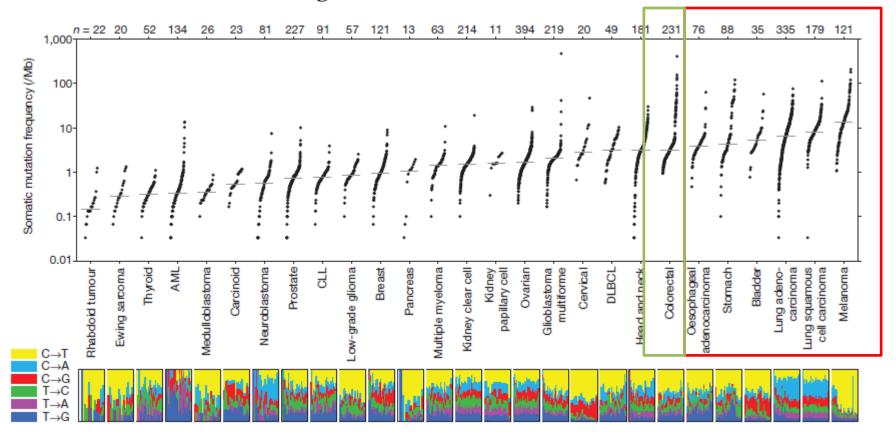
J Taieb WCGIC Barcelona 2016


Immunoscore definition and methodology.

Anitei M et al. Clin Cancer Res 2014;20:1891-1899

Immunoscore by staining CD3 and CD8 positive cells in the CT and IM of rectal cancer Immunohistochemis try of a colorectal tumour stained for CD3 + T cells (brown).

Immunity seems important in CRC immunoscore ASCO 2016

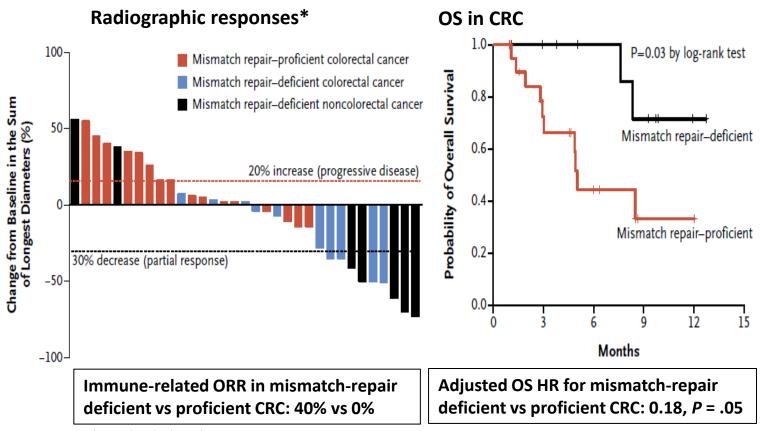


Mutational load

LETTER

doi:10.1038/nature12213

Mutational heterogeneity in cancer and the search for new cancer-associated genes


Immunotherapy in MSI-high mCRC

...what do we know, where do we go?

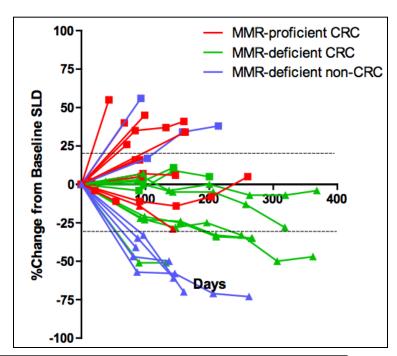
Checkpoint blockers Efficacy signal in MSI-H colorectal cancer

Treatment with pembrolizumab (anti-PD-1 antibody)

(n=11 mismatch repair-deficient CRC, n=21 mismatch-repair proficient CRC, n=9 mismatch-repair deficient non-CRC)

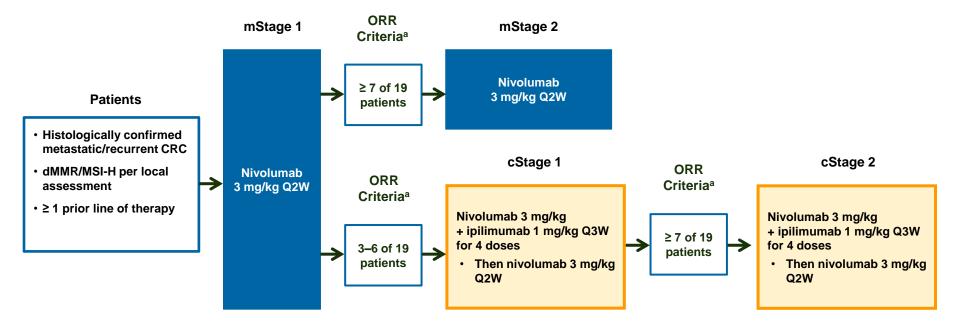

^{*}RECIST-based radiographic response

^{**}Adjusted for elapsed time since the initial diagnosis


PD-1 Blockade in Tumors with Mismatch-Repair Deficiency

The NEW ENGLAND JOURNAL of MEDICINE

CEA response


Radiographic Response

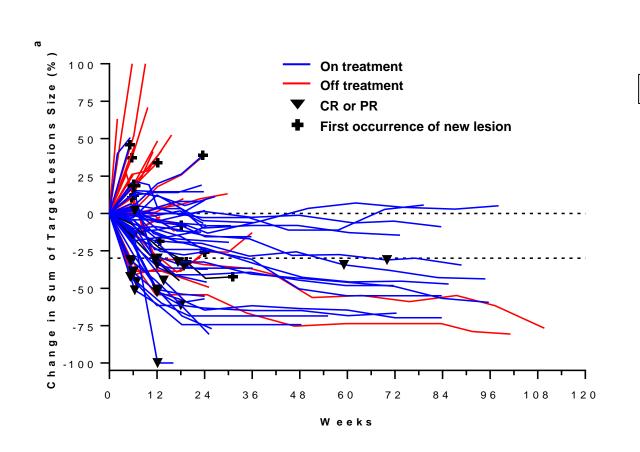
Type of Response	Mismatch Repair–Deficient Colorectal Cancer (N=10)	Mismatch Repair–Proficient Colorectal Cancer (N=18)	Mismatch Repair–Deficient Noncolorectal Cancer (N = 7)
Complete response — no. (%)	0	0	1 (14)*
Partial response — no. (%)	4 (40)	0	4 (57)†
Stable disease at week 12 — no. (%)	5 (50)	2 (11)	0
Progressive disease — no. (%)	1 (10)	11 (61)	2 (29)

Study Design and Endpoints

CheckMate 142: dMMR/MSI-H CRC

- Primary endpoint: objective response rate (ORR) per investigator assessment
- Secondary endpoint: ORR per blinded independent central review (BICR)
- Key exploratory endpoints: safety and tolerability; progression-free survival (PFS); overall survival (OS); biomarkers

cStage, combination therapy stage; mStage, monotherapy stage. aORR (complete response + partial response) in patients with centrally-confirmed MSI-H status.


Response and Disease Control

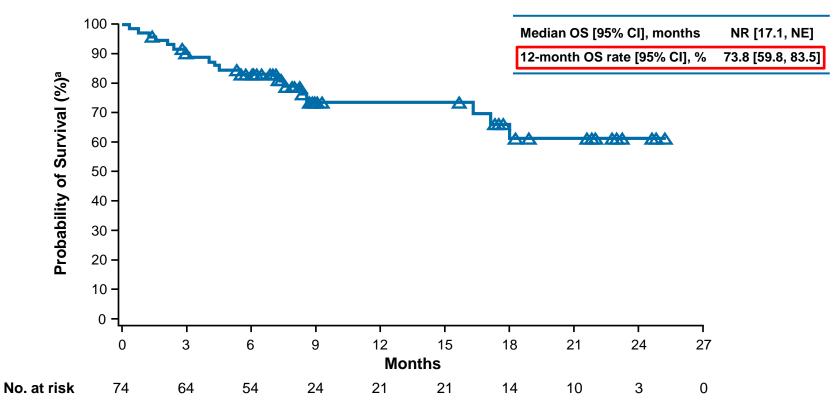
CheckMate 142: dMMR/MSI-H CRC

	dMMR/MSI-H per Local Assessment (N = 74) ^a	
	Investigator	BICR
ORR, n (%) [95% CI]	23 (31.1) [20.8, 42.9]	20 (27.0) [17.4, 38.6]
Best overall response, n (%) Complete response Partial response Stable disease Progressive disease Not determined Not reported	0 23 (31.1) 29 (39.2) 18 (24.3) 4 (5.4) 0	2 (2.7) 18 (24.3) 28 (37.8) 20 (27.0) 5 (6.8) 1 (1.4)
Disease control for ≥ 12 weeks, n (%)	51 (68.9)	46 (62.2)
Median TTR (range), months	2.8 (1.2–16.1)	2.7 (1.2–17.7)
Median DOR [95% CI], months	NR [6.8, NE]	NR [NE]

DOR, duration of response; NE, not estimable; NR, not reached; TTR, time to response. $^{\rm a}$ Patients from monotherapy stage 1 and 2 combined.

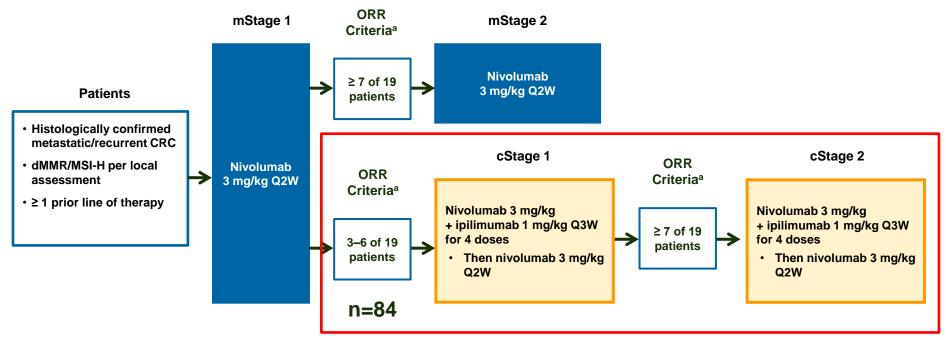

MSI-high CRC: Nivolumab Monotherapy

RR 31% SD 39% PD 24%


Disease Control ≥12weeks in 69%

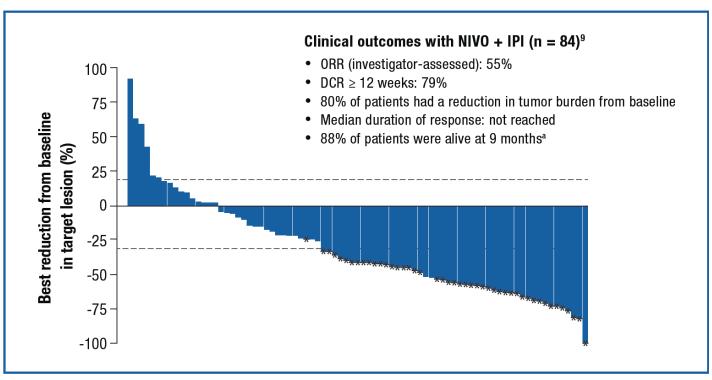
Progression-Free Survival

BICR, blinded independent central review; NE, not estimable. a Investigator assessed dMMR/MSI-H by local laboratory.


Overall Survival

NR, not reached. a dMMR/MSI-H assessed by local laboratory.

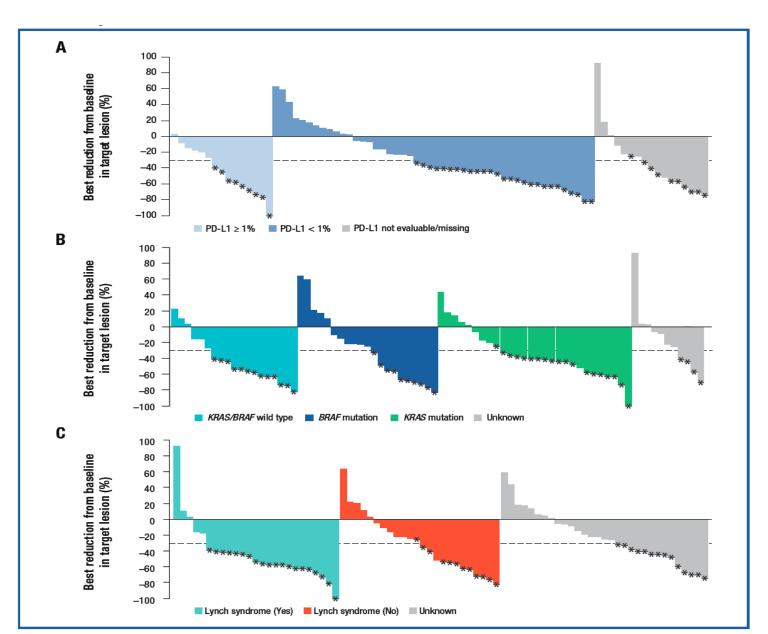
Study Design and Endpoints


CheckMate 142: dMMR/MSI-H CRC

- Primary endpoint: objective response rate (ORR) per investigator assessment
- Secondary endpoint: ORR per blinded independent central review (BICR)
- Key exploratory endpoints: safety and tolerability; progression-free survival (PFS); overall survival (OS); biomarkers

ESMO 2017: Change in Tumor Burden by Investigator

CheckMate 142: dMMR/MSI-H CRC



^{*}Confirmed CR or PR per investigator

^aKaplan-Meier estimated

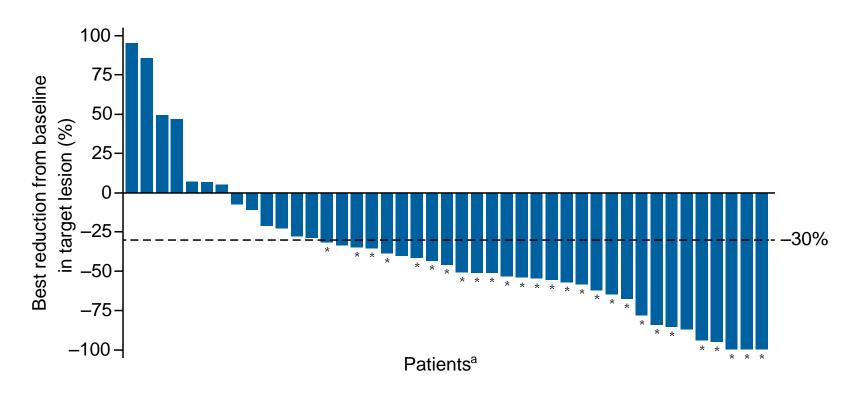
ESMO 2017: Change in Tumor Burden by Molecular Profile

CheckMate 142: dMMR/MSI-H CRC

Checkmate 142- Conclusion Biomarker

Clinical responses were observed with NIVO + IPI across all biomarker groups assessed

- --Responses were observed regardless of PD-L1 tumor expression, *BRAF* or *KRAS* mutations, or a clinical history of Lynch syndrome --Among patients with *BRAF*-mutant tumors, NIVO + IPI led to an ORR of 48% and a DCR of 76%
- --Among patients with a clinical history of Lynch syndrome, the ORR was 74% and the DCR was 81%

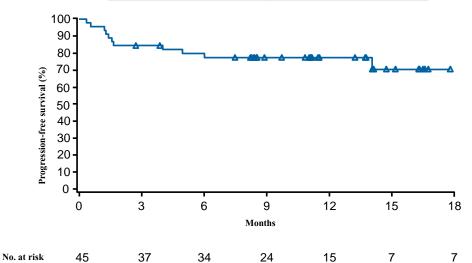


Durable Clinical Benefit With Nivolumab Plus Low-Dose Ipilimumab as First-Line Therapy in Microsatellite Instability-High/Mismatch Repair Deficient Metastatic Colorectal Cancer

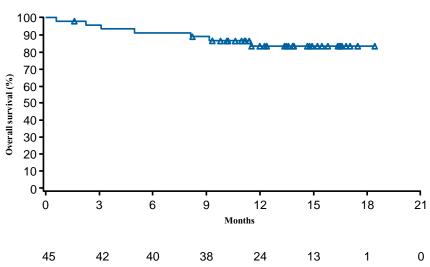
Heinz-Josef Lenz,¹ Eric Van Cutsem,² Maria Luisa Limon,³ Ka Yeung Mark Wong,⁴ Alain Hendlisz,⁵ Massimo Aglietta,⁶ Pilar García-Alfonso,⁷ Bart Neyns,⁸ Gabriele Luppi,⁹ Dana B. Cardin,¹⁰ Tomislav Dragovich,¹¹ Usman Shah,¹² Ajlan Atasoy,¹³ Roelien Postema,¹³ Zachary Boyd,¹³ Jean-Marie Ledeine,¹³ Michael James Overman,¹⁴ Sara Lonardi¹⁵

¹USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA;
 ²University Hospitals Gasthuisberg/Leuven and KU Leuven, Leuven, Belgium;
 ³Hospital Universitario Virgen del Rocio, Sevilla, Spain;
 ⁴Westmead Hospital, Sydney, Australia;
 ⁵Institut Jules Bordet, Brussels, Belgium;
 ⁶Candiolo Cancer Institute and University of Torino Medical School, Candiolo, Italy;
 ⁷Hospital Gral Universitario Gregorio Marañon, Madrid, Spain;
 ⁸University Hospital Brussels, Brussels, Belgium;
 ⁹University Hospital of Modena, Modena, Italy;
 ¹⁰Vanderbilt – Ingram Cancer Center, Nashville, TN, USA;
 ¹¹Banner MD Anderson Cancer Center, Gilbert, AZ, USA;
 ¹²Lehigh Valley Hospital, Allentown, PA, USA;
 ¹³Bristol-Myers Squibb, Princeton, NJ, USA;
 ¹⁴The University of Texas MD Anderson Cancer Center, Houston, TX, USA;
 ¹⁵Istituto Oncologico Vento IOV-IRCSS, Padova, Italy

Best Reduction in Target Lesions


84% of patients had a reduction in tumor burden from baseline

^{*}Confirmed response per investigator assessment


^aEvaluable patients per investigator assessment

Progression-Free and Overall Survival

PFS ^a	NIVO3 (Q2W) + IPI1 (Q6W) N = 45	
Median PFS, months (95% CI)	NR (14.1–NE)	
9-mo rate (95% CI), %	77 (62.0–87.2)	
12-mo rate (95% CI), %	77 (62.0–87.2)	

OSª	NIVO3 (Q2W) + IPI1 (Q6W) N = 45
Median OS, months (95% CI)	NR (NE)
9-mo rate (95% CI), %	89 (74.9–95.1)
12-mo rate (95% CI), %	83 (67.6–91.7)

^aPer investigator assessment. mo = month; NE = not estimable; NR = not reached

Neoadjuvant Ipilimumab plus Nivolumab in Early Stage Colon Cancer

- first results of the NICHE study

Myriam Chalabi, Lorenzo Fanchi, Jose van den Berg, Geerard Beets, Arend Aalbers, Petur Snaebjornsson, Cecile Grootscholten, Marjolijn Mertz, Marta Lopez, Elvira Nuijten, Maria Kuiper, Marleen Kok, Monique van Leerdam, Ton Schumacher, Emile Voest, John Haanen

Netherlands Cancer Institute - Amsterdam

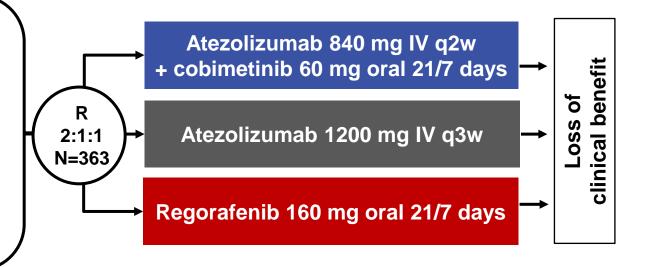
efficacy - major response in 100% of dMMR tumors

dMMR (n=7)			
Pre-treatment clinical stage	Pathological stage at resection	Residual vital tumor	
cT2N2a	ypT0N0	0 %	
cT2N0	ypT0N0	0 %	
cT2N0	ypT0N0	0 %	
cT3N0	ypT0N0	0 %	
cT3N2a	ypT1N0	1 %	
cT4aN2a	ypT2N0	2 %	
cT4aN1a	ypT3N1	2 %	

pMMR (n=8)			
Pre- treatment clinical stage	Pathological stage at resection	Residual vital tumor	
cT3N1a	ypT3N2	85 %	
cT3N0	ypT3N0	90 %	
cT2N0	ypT3N1	90 %	
cT2N0	ypT3N0	90 %	
cT3N1b	ypT3N1	90 %	
cT3N1b	ypT3N2	95 %	
cT3N0	ypT3N0	100%	
cT2N0	ypT2N0	100 %	

^{*}Major pathological response = <10% residual vital tumor Residual vital tumor %: average of scores by two independent pathologists

Optimal treatment of mCRC in the presence of MSS



IMblaze370: randomised, Phase III, multicentre, open-label study in mCRC

- Unresectable locally advanced or metastatic CRC
- Received ≥ 2 prior regimens of cytotoxic chemotherapy for metastatic disease
- ECOG PS 0-1
- MSI-H capped at 5%

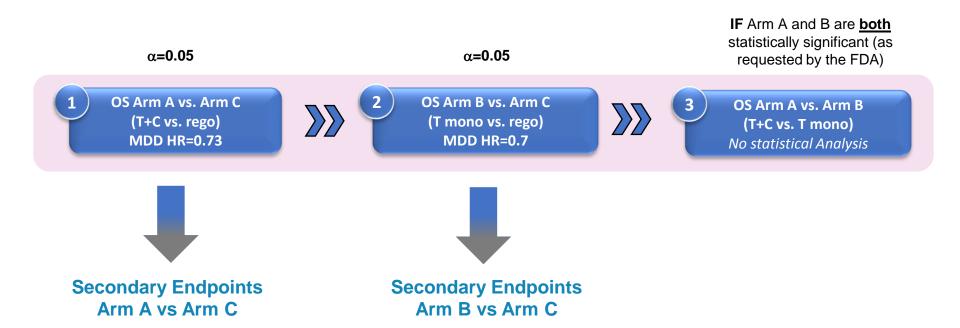
Stratification

- Extended RAS mutation status (≥ 50% patients in each arm)
- Time since diagnosis of first metastasis (< 18 months vs ≥ 18 months)

Primary endpoint

- OSa
 - Atezo + cobi vs rego
 - Atezo vs rego

INV-assessed key secondary endpoints

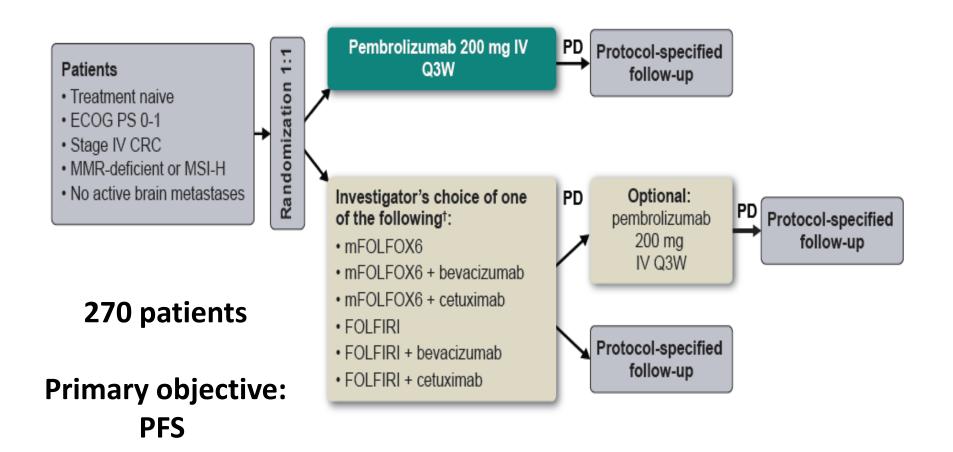

- PFS
- ORR
- DOR

Data cutoff date: March 9, 2018

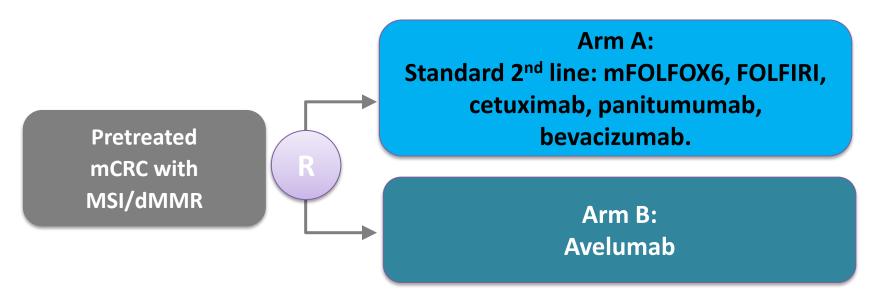
Atezo, atezolizumab; cobi, cobimetinib; INV, investigator; rego, regorafenib.

^a Two-sided type I error rate of 0.05 was controlled by hierarchical testing (testing atezo vs rego only if atezo + cobi vs rego was positive). NCT02788279.

Statistical testing plan for the primary endpoints of IMblaze370

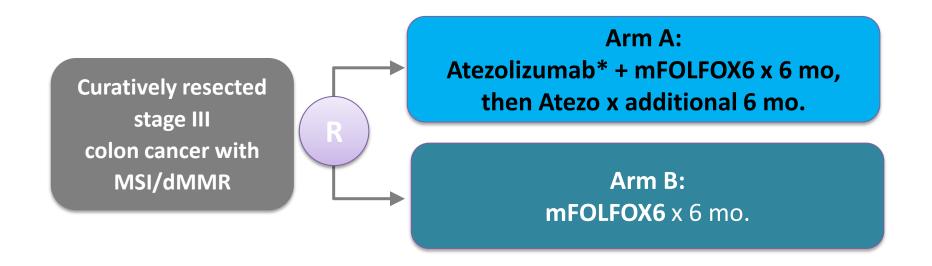

29

^{*}At time of PFS readout there will be an early interim analysis of OS with negligible alpha attributed to this analysis



ONGOING TRIALS

Keynote 177 first line mCRC MSI-H

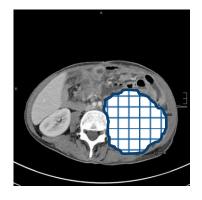

PRODIGE SAMCO TRIAL 2nd line mCRC MSI-H

- Avelumab (anti-PD-L1 Ab); dose of 10 mg/kg IV q2 wk.
- Accrual goal: N= 116; HR 0.59
- Primary endpoint: PFS (+5 months)

PI: J Taieb, HEGP, Paris

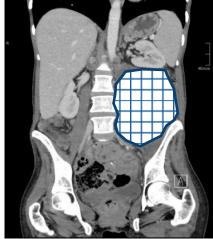
Alliance Trial of Atezolizumab as Adjuvant Therapy in Stage III MSI Colon Cancer

- Atezo (anti-PD-L1 Ab); dose of 800 mg IV q2 wk.
- Stratification factors: N1 vs N2, primary site and age.
- Accrual goal: N= 900; HR 0.65
- Primary endpoint: DFS

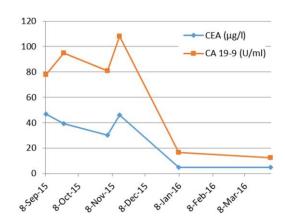

PI: Frank Sinicrope, Mayo Clinic

Many other trials ongoing or planned

- Phase II:
 - Atezolizumab (anti-PD-L1 Ab)+ FOLFOX+ bev (reported)
 - Durvalumab (all commers?)
 - Pembrolizumab in MSS with high immunoscore
- Phase I/II:
 - Chemotherapy plus anti-PD1
 - Ipilumumab basket study with specific mCRC cohorts
 - Tremelimumab
- Randomized phase II and III


•

Impressive response upon anti-PD1 treatment in MMR-deficient mCRC patients

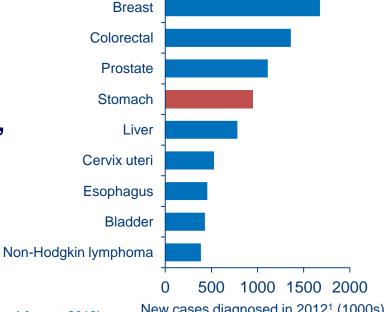


Impressive response: on the left showing the bulky metastasis before treatment and on the right after three months treatment with pembrolizumab

baseline

after 3 month

Conclusion


- Trials are ongoing in mCRC and in the adjuvant setting
- Colon cancer probably less easy than others
- MSI-H tumors: a good target
- Others may be: PolE, PolD, MSS with immune infiltrates...
- Combination with targeted agents:
 - + chemotherapy, sequence?
 - + radiotherapy?
 - + targeted agents: anti-angiogenics; MEK...?

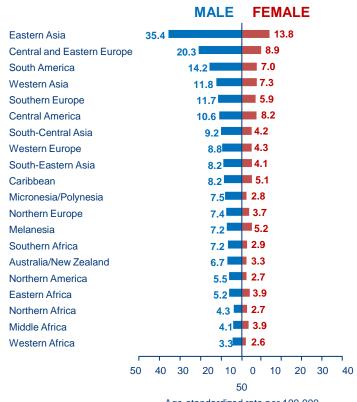
Gastric-Cancer ...what do we know, where do we go?

The burden of gastric cancer

- Fifth most common malignancy worldwide with 952,000 new cases in 2012¹
- It is the third leading cause of cancer death in both sexes²
- Due to its asymptomatic early features, gastric cancer is diagnosed in many patients at an advanced stage^{3,4}
- Despite a falling global incidence and significant progress in treatment, further efforts are necessary to improve prognosis⁴

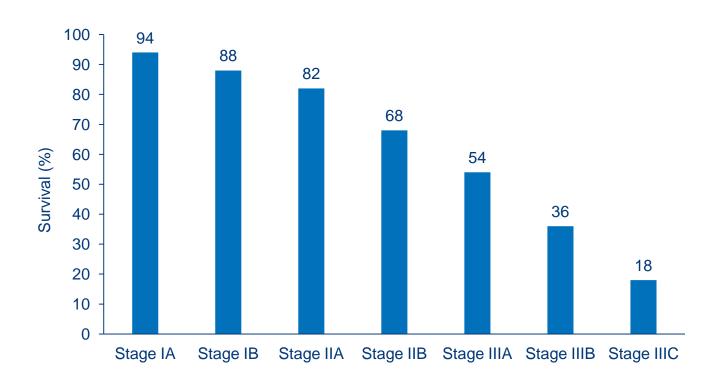
Lung

1. WCRF. http://www.wcrf.org/int/cancer-facts-figures/worldwide-data (date last accessed August 2018);


New cases diagnosed in 2012¹ (1000s)

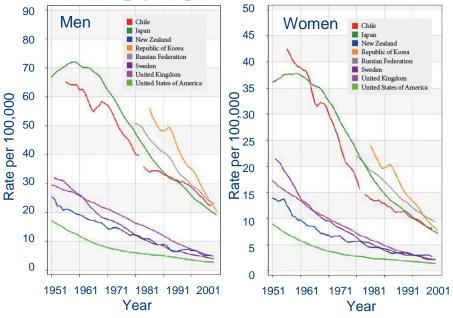
3. Jou E, et al. World J Gastroenterol 2016;22:4812–23; 4. Pasechnikov V, et al. World J Gastroenterol 2014;20:13842–62

^{2.} GLOBOCAN Stomach Cancer Fact Sheet. http://globocan.iarc.fr/old/FactSheets/cancers/stomach-new.asp (date last accessed August 2018):

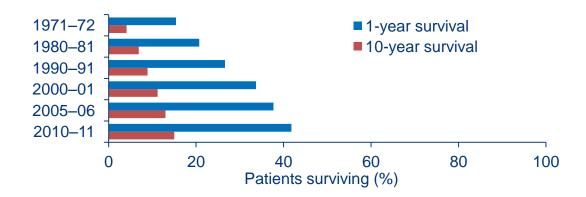

Global variability in gastric cancer: Incidence

- The incidence of gastric cancer is highest in Eastern Asia, Central and Eastern Europe, and South America¹
- Over 70% of gastric cancer cases occur in developing countries²
- Globally, rates were twice as high in men than women¹ in 2012

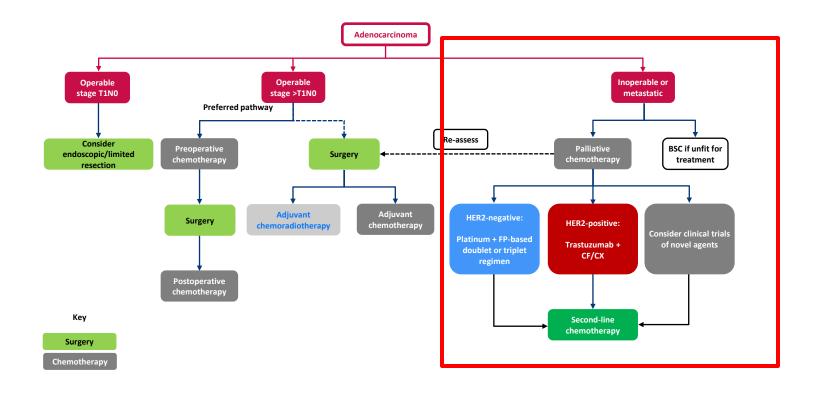
Age-standardized rate per 100,000


Gastric cancer: 5-year survival by stage*

^{*}For stomach cancer treated with surgery
ACS. Survival Rates for Stomach Cancer by Stage. https://www.cancer.org/cancer/stomach-cancer/detection-diagnosis-staging/survival-rates.html
(date last date last accessed August 2018)


Global variability in gastric cancer survival

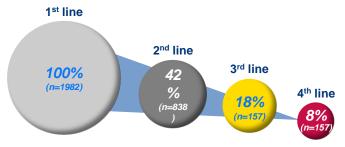
- 5-year survival rates are <30% in most countries
 - Exception: 5-year survival rates are ~70% in South Korea and Japan due to screening programs



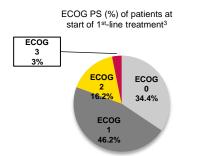
Survival in patients with gastric cancer

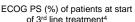
- In most regions, survival from gastric cancer continues to be poor: in Western countries including Europe and the US, 5-year survival does not exceed 25%¹
- Five-year survival rate is relatively good only in Japan, reaching 90% due to screening by endoscopic examination and early tumor resection²

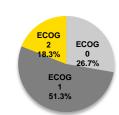
Current ESMO recommendations for treatment of gastric cancer



Second-line treatment of advanced gastric cancer


- Second-line treatment options include irinotecan, docetaxel, or paclitaxel if not used before¹
- Ramucirumab (anti-VEGFR-2 monoclonal antibody) has shown a survival benefit vs cytotoxic chemotherapy²
 - Ramucirumab added to paclitaxel has shown a survival advantage compared with paclitaxel alone²
 - As a single agent as well vs placebo³
- Second-line chemotherapy with a taxane (docetaxel, paclitaxel), or irinotecan, or ramucirumab as single agent or in combination with paclitaxel, is recommended for patients who are of PS 0–1
- Re-challenge may be appropriate in patients with disease progression >3 months after first-line chemotherapy¹


Post-second-line treatment in patients with advanced gastric cancer


- Many patients with advanced/metastatic gastric cancer are motivated to receive post-second-line treatment and have adequate performance status to do so¹
 - In an EMR database study, 26% of patients received third- or fourth-line therapy²
- There is a lack of standard treatment options particularly following first-line therapy
- There is no established third-line therapy for advanced gastric cancer¹
- Many patients progressing beyond second-line treatment remain fit for further therapy¹
- There is a need for effective and well-tolerated therapies^{1,3}

N=1982 patients with gastric cancer and EMR data who received chemotherapy between January 2004 and January 2012 in oncology practices subscribing to the US-wide IMS Health Oncology Database²

Post-second-line treatment in patients with advanced gastric cancer

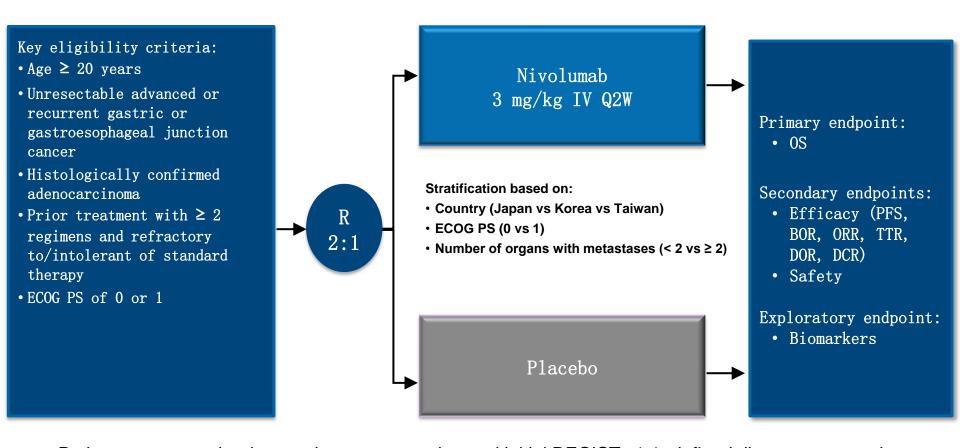
ESMO guidelines:1

- Treatment options may be used sequentially in second and third line, but there is no clear evidence for a benefit beyond secondline treatment
- Further options are needed for both second-line and post-second-line chemotherapy^{1,2}
- Findings of systematic reviews:
 - Compared with BSC, everolimus or regorafenib in the second- or third-line setting had no benefit in terms of OS, but provided a median PFS gain of $\Delta 0.3$ and $\Delta 1.6$ months, respectively³
 - Compared with BSC, apatinib in the third- or later-line setting showed increased OS ($\Delta 1.8$ to $\Delta 2.3$ months) and PFS ($\Delta 0.8$ to $\Delta 2.3$ months)³
 - Compared with placebo or BSC, third-line chemotherapy showed superior OS and PFS⁴

Cancer treatment beyond second line

ATTRACTION-2

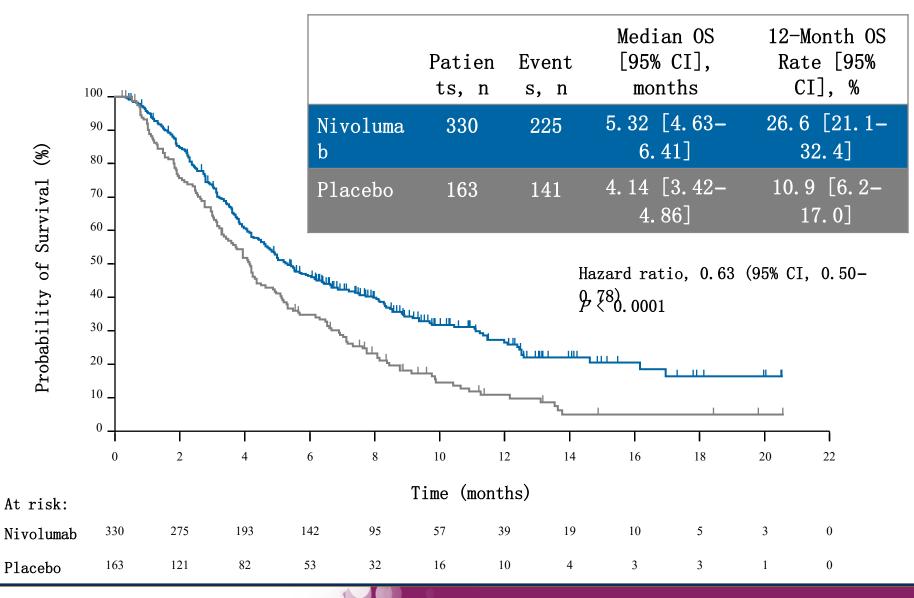
Nivolumab (ONO-4538/BMS-936558) as Salvage Treatment After Second- or Later-Line Chemotherapy for Advanced Gastric or Gastroesophageal Junction Cancer (AGC): A Double-Blinded, Randomized, Phase 3 Trial


<u>Yoon-Koo Kang</u>,¹ Taroh Satoh,² Min-Hee Ryu,¹ Yee Chao,³ Ken Kato,⁴ Hyun Cheol Chung,⁵ Jen-Shi Chen,⁶ Kei Muro,⁷ Won Ki Kang,⁸ Takaki Yoshikawa,⁹ Sang Cheul Oh,¹⁰ Takao Tamura,¹¹ Keun-Wook Lee,¹² Narikazu Boku,⁴ Li-Tzong Chen¹³

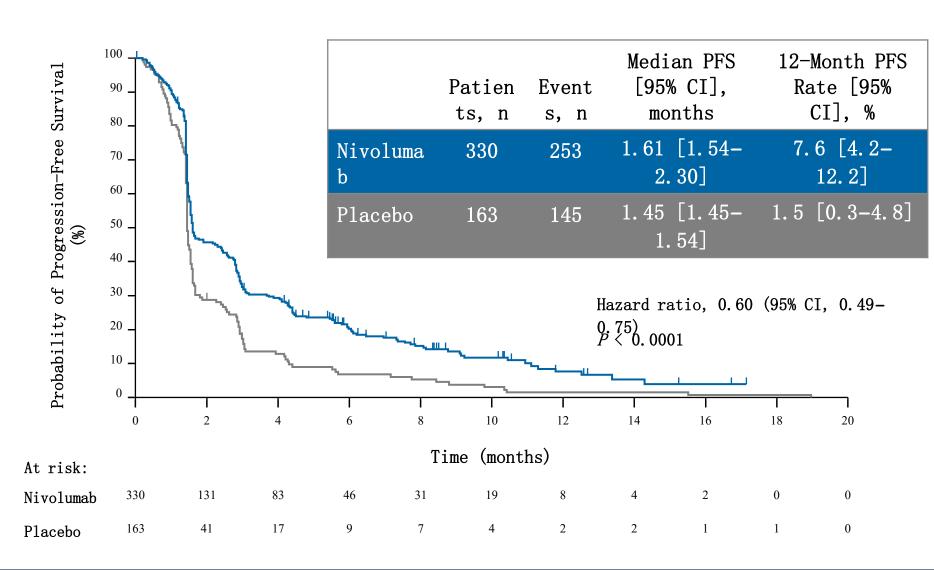
¹Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; ²Frontier Science for Cancer and Chemotherapy, Osaka University Graduate School of Medicine, Suita, Japan; ³Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan; ⁴Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan; ⁵Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Song Dang Institute for Cancer Research, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea; ⁶Division of Hematology/Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; ¬Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan; ¬Bivision of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; ¬Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan; ¬Division of Hematology/Oncology, Internal Medicine Department, College of Medicine, Korea University, Seoul, Korea; ¬Medical Oncology, Kindai University, Faculty of Medicine, Osakasayama, Japan; ¬Division of Hematology/Oncology, Department of Internal Medicine, Seoul National University College of Medicine, Seongnam, Korea; ¬National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan

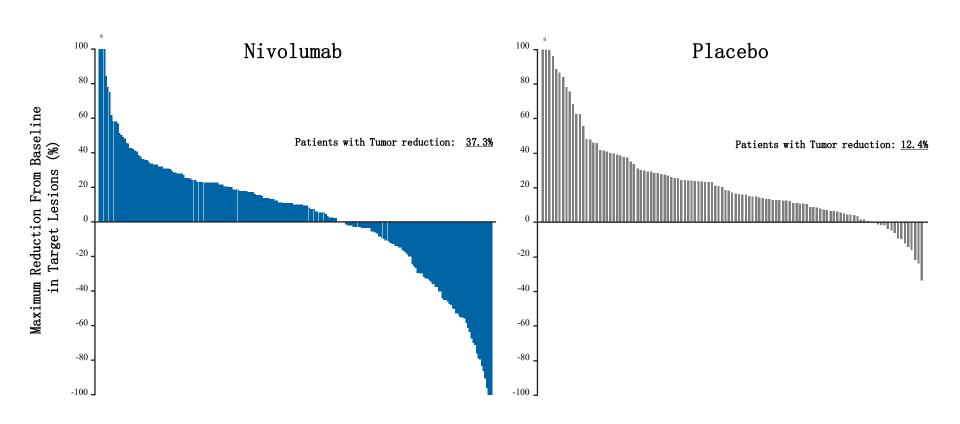
Nivolumab is not approved in Europe for the treatment of gastric cancer

Study Design and Endpoints


 Patients were permitted to continue treatment beyond initial RECIST v1.1—defined disease progression, as assessed by the investigator, if receiving clinical benefit and tolerating study drug

Nivolumab is not approved in Europe for the treatment of gastric cancer

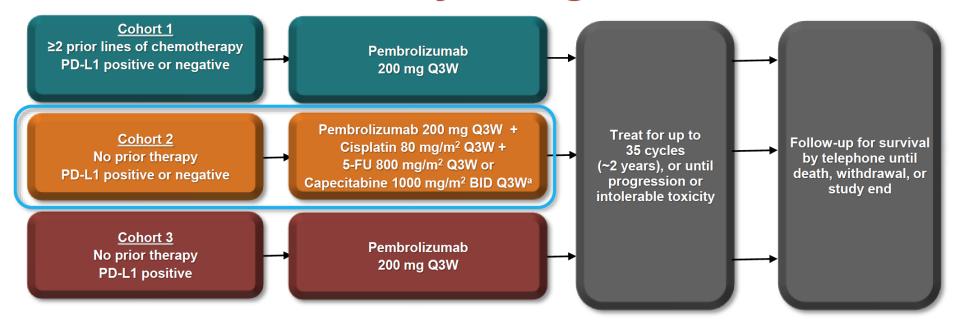

BOR, best overall response; DCR, disease control rate; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; IV; intravenous; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; Q2W, every 2 weeks; R, randomization; RECIST, Response Evaluation Criteria In Solid Tumors; TTR, time to tumor response.


Overall Survival

Progression-Free Survival

Maximum Reduction in Tumor Burden From Baseline

^a Patients with a change in tumor burden that exceeds 100%.

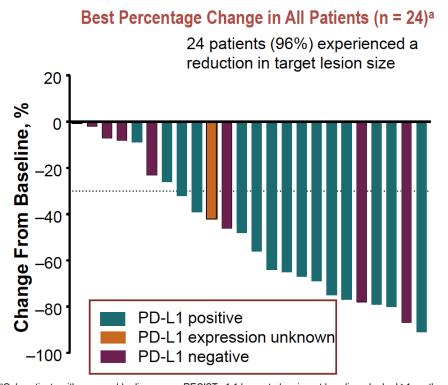


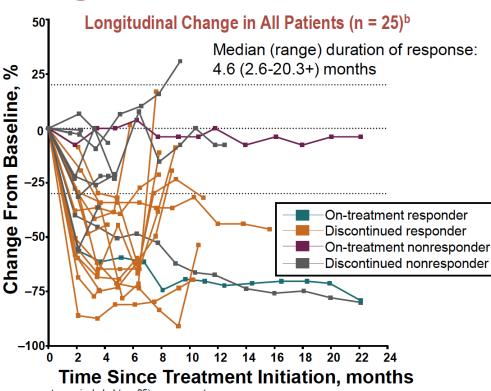
KEYNOTE-059: Efficacy and Safety of Pembrolizumab Alone or in Combination With Chemotherapy in Patients With Advanced Gastric or Gastroesophageal Cancer

Zev A. Wainberg,¹ Shadia I. Jalal,² Kei Muro,³ Harry H. Yoon,⁴ Marcelo Garrido,⁵ Talia Golan,⁶ Toshihiko Doi,⁷ Daniel V. Catenacci,⁸ Ravit Geva,⁹ Geoffrey Ku,¹⁰ Jonathan Bleeker,¹¹ Yung-Jue Bang,¹² Hiroki Hara,¹³ Hyun Cheol Chung,¹⁴ Mary J. Savage,¹⁵ Jiangdian Wang,¹⁵ Minori Koshiji,¹⁵ Rita P. Dalal,¹⁵ Charles S. Fuchs¹⁶

¹David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA; ²Indiana University School of Medicine, Indianapolis, IN, USA; ³Aichi Cancer Center Hospital, Nagoya, Aichi, Japan; ⁴Mayo Clinic, Rochester, MN, USA; ⁵Pontificia Universidad Católica de Chile, Santiago, Chile; ⁶Sheba Medical Center and the Sackler School of Medicine, Tel Aviv, Israel; ¬National Cancer Center East, Chiba, Japan; ³University of Chicago Medicine, Chicago, IL, USA; ¹Tel Aviv-Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel; ¹Omemorial Sloan Kettering Cancer Center, New York, NY, USA; ¹Sanford Health, Sioux Falls, SD, USA; ¹Seoul National University Hospital, Seoul, Republic of Korea; ¹Saitama Cancer Center, Saitama, Japan; ¹4Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ¹SMerck & Co., Inc., Kenilworth, NJ, USA; ¹Syale Cancer Center, New Haven, CT, USA

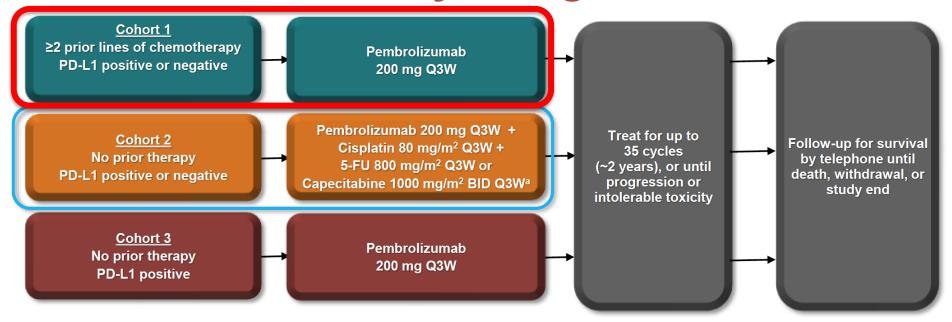
KEYNOTE-059 Study Design




MADRID ES CONGRESS

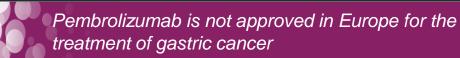
aCapecitabine was administered only in Japan.

Cohort 2: Best Percentage Change and Longitudinal Change in Target Lesion Size

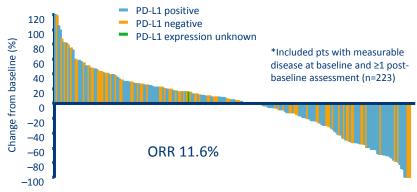

^aOnly patients with measurable disease per RECIST v1.1 by central review at baseline who had ≥1 postbaseline assessment were included (n = 25); assessment was nonevaluable for 1 patient.

PLongitudinal change in the sum of the longest target lesion diameters from baseline in patients with ≥1 postbaseline assessment (n = 25). +No progressive disease at last disease assessment.

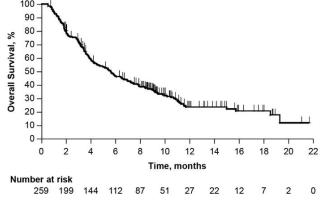
ata cutoff: April 21, 2017.



KEYNOTE-059 Study Design

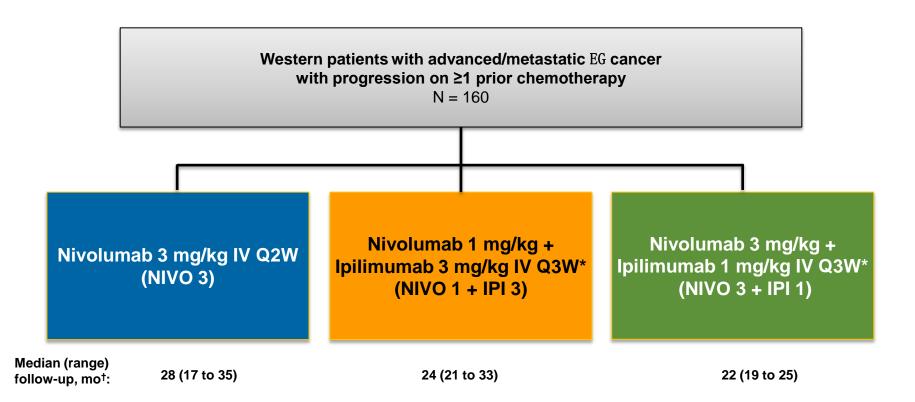


aCapecitabine was administered only in Japan.


KEYNOTE-059: Pembrolizumab in chemorefractory mGC (2)

RECIST response rates are modest (identical to nivolumab in ATTRACTION-02)

Responses in PD-L1-positive and -negative patients


	PD-L1 status		Line of Treatment	
	Positive	Negative	3rd	≥ 4th
	(n = 148)	(n = 109)	(n = 134)	(n = 125)
ORR (%)	15.5	6.4	16.4	6.4
	(10.1-22.4)	(2.6-12.8)	(10.6-23.8)	(2.8-12.2)

Combination-IOs: Checkmate 032 EG Cohort

Primary endpoint:

ORR per RECIST v1.1

Secondary endpoints:

- OS, PFS, TTR, DOR
- Safety Exploratory endpoint:

PD-L1 tumor expression (Dako 28-8 pharmDx assay)

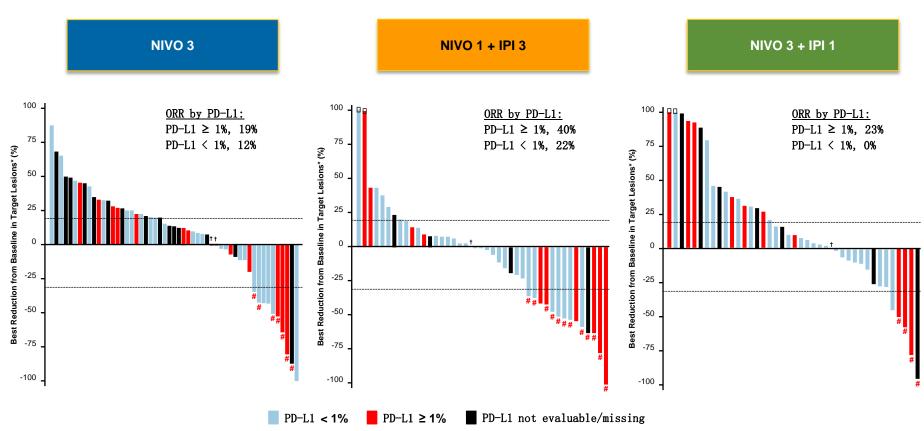
DOR, duration of response; EG, esophagogastric (including gastric/esophageal/gastroesophageal junction cancer); TTR, time to response.

[†]Time from first dose to data cut-off; follow-up was shorter for patients who died prior to data cut-off.

^{*} Nivolumab + ipilimumab administered for 4 cycles followed by nivolumab 3 mg/kg IV Q2W.

Objective Response

	NIVO 3 n = 59	NIVO 1 + IPI 3 n = 49	NIVO 3 + IPI 1 n = 52
ORR, n (%)*	7 (12)	12 (24)	4 (8)
[95% CI]	[5, 23]	[13, 39]	[2, 19]
BOR, n (%)*			
Complete response	1 (2)	1 (2)	0
Partial response	6 (10)	11 (22)	4 (8)
Stable disease	12 (20)	8 (16)	15 (29)
Progressive disease	34 (58)	23 (47)	24 (46)
Not evaluable	6 (10)	6 (12)	9 (17)
DCR, n (%) [†]	19 (32)	20 (41)	19 (37)
Median TTR (range), months	1.6 (1.2 to 4.0)	2.7 (1.2 to 14.5)	2.6 (1.3 to 2.8)
Median DOR (95% CI), months	7.1 (3.0, 13.2)	7.9 (2.8, NE)	NR (2.5, NE)

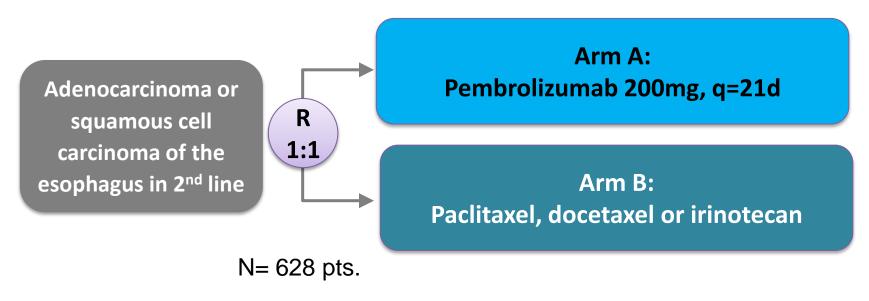

 $BOR, best \ objective \ response; \ DCR, \ disease \ control \ rate; \ NR, \ not \ reached, \ NE, \ not \ estimable.$

 $^{^{\}dagger}$ Patients with a BOR of complete response, partial response, or stable disease.

^{*} Investigator review.

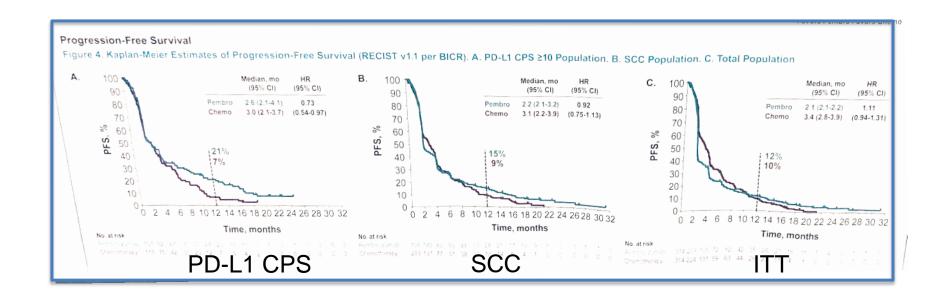
Best Reduction in Target Lesions

Responses were observed regardless of PD-L1 expression

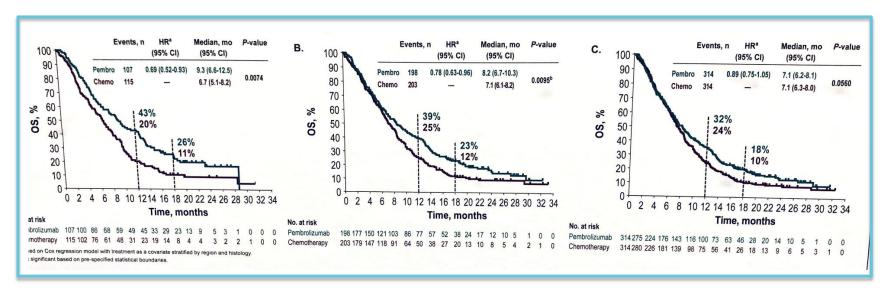

^{*} Investigator review.

[#] Patients with confirmed response (complete or partial response).

[†] Patients with 0% best reduction in target lesion, including 3 patients with PD-L1 ≥1% (NIVO 3, n=2; NIVO 3 + IPI 1, n=1) and 1 patient with PD-L1 <1% (NIVO 1 + IPI 3).

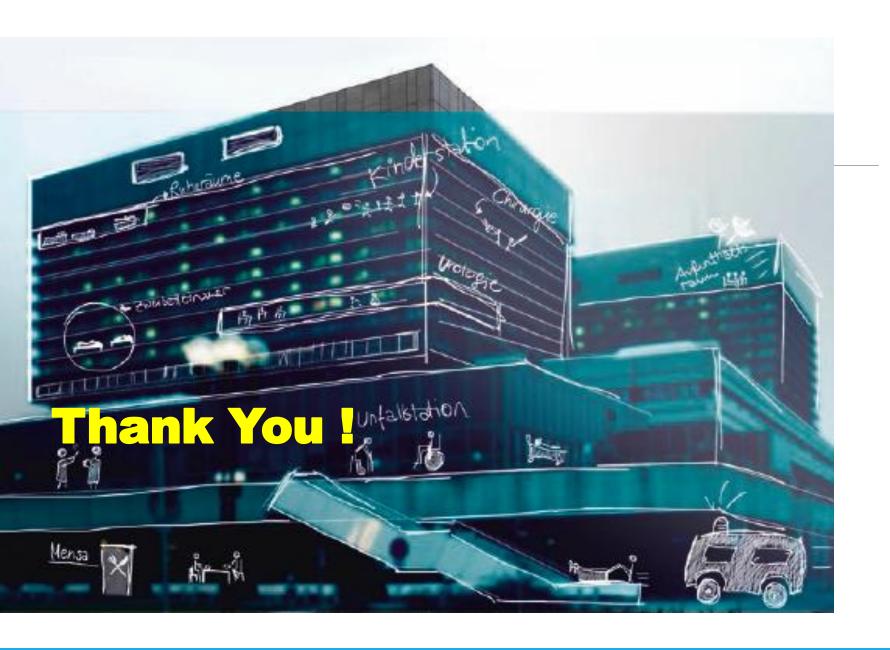

Esophageal Cancer

Keynote-181 in Stage IV Esophageal Cancer



- Primary efficacy end points are PFS (per RECIST v1.1, blinded central imaging vendor review) and OS.
- Secondary end points include ORR (per RECIST v1.1, blinded central imaging vendor review).

Progession Free Survival


Overall Survival

PD-L1 CPS SCC ITT

Conclusion

- Trials are ongoing in GC in the palliative and adjuvant setting
- Colon cancer probably less easy than others
- MSI-H tumors: a good target
- Others may be: PD-L1 expression in upper GI
- Combination with targeted agents:
 - + chemotherapy
 - + radiotherapy
 - + other IOs

